Automatic Control

Chapter three

Mathematical Modeling of mechanical end electrical systems

By

Laith Batarseh




ﬁuowwgcwﬁb

- =M =& B o A

Mathematical Modeling of mechanical end electrical systems

Dynamic system modeling

Definition of the system and
its components

Formulation of mathematical
model and assumptions

Represent the mathematical
model by DE

Solve the mathematical
model

Verify the solution and the
assumptions

l Obtain the
Otherwise solution
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Through and across — variables O™

A through — variable is the variable that does not change between the
ends of system element. For example, a current passing through a
resistance

Across — variable is the variable that changes between the ends of
system element. For example, the voltage at the ends of a resistance

Electrical Current, i Voltage diff., v
Translational motion Force, F Velocity diff., V
Rotational motion Torque, T Angular velocity, o
Fluids Flow rate, Q Pressure, P
Thermal Heat flow, g Temp. diff., T
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Mathematical Modeling of mechanical end electrical systems

DE for ideal elements

Governing DE Governing DE

Elec. Inductance v =L (di/dt) Fluid caps. Q = Cf (dP/dt)
Trans. Spring V = (1/k)(dF/dt) Thermal caps. q = Ct (dT,,,,/dt)
Rot. Spring w = (1/k)(dT/dt)  Elec. Resistance I=(1/R)v

Fluid inertia P=1(dQ/dt) Trans. Damper F=Cv
Elec. Capacitance i =C (dv/dt) Rot. Damper T=Cw
Mass F =M (dv/dt) Fluid resistance Q=(1/R) P
Mass moment of T=J(dw/dt) Thermal Q=(1/R)T
inertia resistance
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Analogous systems e

Analogous systems are systems that have the same governing differential
equation

Example

Mass — spring damper system

ﬁmwwaQWE»

M d\;—t(t)+ DV(t)+ k_t[V (t)dt = F(t)

0

RLC circuit

dv(t)
dt

C

+ Vg) +%Iv(t).dt =R(t)
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Mathematical Modeling of mechanical end electrical systems

Laws for modeling

In control systems, the main systems are combination between mechanical and
electrical systems. For mechanical systems, Newton’s laws are used and in the
electrical systems Kirchhoff's laws are used

Newton 2" [aw of motion

F is the force
m is the mass
a in the acceleration

Kirchhoff's laws

Junction Rule D_l;=>_1, where I is the current

Close Loop Rule ZAVdosed wop = O where V is the voltage
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Mathematical Modeling of mechanical end electrical systems

Newton 2" law of motion

Statement

When a net external force acts on an
object of mass m, the acceleration that
results is directly proportional to the
net force and has a magnitude that is
inversely proportional to the mass. The
direction of the acceleration is the

same as the direction of the net force.

Law

Y F=Ma=M x
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Mathematical Modeling of mechanical end electrical systems

Junction Rule Statement

*“At any node (junction) in an electrical circuit, the sum of currents flowing into that node is
equal to the sum of currents flowing out of that node, or: The algebraic sum of currents in a
network of conductors meeting at a point is zero”.

eThe sum of currents entering the junction are thus equal to the sum of currents leaving. This
implies that the current is conserved (no loss of current).

Law Zli =Z|o

Close Loop Rule Statement

The principles of conservation of energy imply that the directed sum of the
electrical potential differences (voltage) around any closed circuit is zero.

LaW Z A closed loop
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Mathematical Modeling of mechanical end electrical systems
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Linear approximation of systems R

The physical system can be linear for a range and none linear if we extend this
range. For example, the helical spring has a liner relation between the force
applied on it and the deflection if the deflection was small.

Linear system has an excitation (x(t)) and response (y(t))

For example
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Complex variable g™

A complex variable is a combination of real and imaginary variables (a and b
respectively )

S ah)
T Compien 1
. variable | ------: 1lmaginary,
Imaginary s-plane
_________ el SRR
s = a+bj
____________ ' _ [a2 [ R2
R/ a=Rcos(@) R=va’+b
o

L 5 Rea i b = Rsin(6) Q:tanl(gj

10
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Complex variable

A complex variable (s) is a combination of real variable (a) and imaginary
variable (b) and is represented as s = a+bj

or it can be represented using Taylor series as: © = R cos(6) + R sin(6) j

A complex variable can be represented as : s = R cos(©) + R sin(6) j

Complex variable operations

Assume s, = a;+b,j and s,=a,+b,j, then

5,£5,=(a;+a,) (b, +b,)] s,1s,=(R;R,) e(61£©2);

5,/5,=(R,/R,) e(@1-02)

11
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Complex functions

A complex function G(s) is a function of complex variables of (s) kind

2
s°+25+10
G(S): Sz(

s° +20s° +35+6)

The values of (s) that make G(s) = 0 are called zeros

The values of (s) that make G(s) = +oo are called poles

G(S)— (S—l)(s+4)

 s%(s+6)s+7)(s+10)

This function has zeros: 1, -4 and oo and poles: 0 (double), -6, -7 (triple) and 10

12
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Laplace transformation

F(s)=[ F(e*dt=r(1 (1)

0

F(s) is the Laplace transformation for the function f(t)

Laplace transformation is used usually to transfer the DE from time (t) domain
to s-domain to reduce its complexity and then solved the transfer function and
represent the solution again in the time domain

Laplace transformation is used in control systems to find a relation between
the output and the input. The procedure is simple, transform the DE to s-
domain and represent the response and the excitation as functions in terms
of s (e.g. Y(s) and R(s) respectively), then the transfer function (G(s)) will be

Y(s)/R(s).
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Laplace transformation

fle)=27{F(s)}

fle)=27{F(s)}

1.

11.

13.

15.

17.

F(s)=2{f(1)]
1

1
n!
M. on=12.3.... 1
5
Jr
F
sin(ar) a
s +a
. 2as
tsin(ar) (534_“ ]2
2a°
sin(ar)—arcos(ar) ( S )2
s +a”
2
S(.s"—a ]
cos(at)—atsin(at) ( . 2]3
s“+a
sin(ar+b) S&ln(b2+ﬂ505{b]
s*+a°
sinh ( at) ,,a
s°—a

2.

14.

le.

18.

at

e
tP.p>-I
=123

cos(ar)

rcos(ar}

sin(ar)+arcos(ar)

cos(at)+arsin(ar)

cos(ar+b)

cosh(at)

s —a’ 14
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Laplace transformation

f(r)=2HFE(s)}  E(s)=2{f(r)} flt)y=27{F(s)} F(s)=2{f (1)}
. b ot s—a
19. e”sin(br) m 20. e cos(br) {S—ﬂ]2+b
. b o s—a
21. " sinh(br) [s—a}z—bz 22. e"cosh(br) (S_H)g Ny
23, "e™, n=12.3.... {S_F:].ﬁl 24, f(er) %F[E]
)5 u(t)y=u(r—c) e 6. 5(t—c) -
Heaviside Function o Dirac Delta Function
27, u(t)f(t-c) e “F(s) 28, u (r)g(r) e 0 {g{r+c)}
20. e“f (1) F(s—c) 30. "f(r). m=12.3... (1) F" (s)
31. %f{r] LmF[u]rfn 32. L: f(v)dv FES:'
33. f;f{r—r}g[r}dr F(5)G(s) 34, f(r+T)=f(1) _‘.ge_ﬂf“)‘ﬁ
1o T
35. f'(1) sF(s)-f(0) |36. f"(r) s'F(s)—sf(0)-f'(0)
37. fU(t) s"F (5)=s""£(0)=s"2f'(0)--—sf " (0)- "7 (0)
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Mathematical modeling of springs
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(a)

keq = k'l + kz

NN N

—— x
ky
- [
(b)
B kik, _ 1
X ki + k, l+i
k4 2
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.
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C X v X z V

(a) (b)
beg = by + by bcq:b]bf’zbzz 1 1 1
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Mathematical Modeling of mechanical end electrical systems

EXAMPLE: Consider the mass-spring-friction system shown in Fig. The V%Qm&wl
linear motion concerned is in the horizontal direction. The free-body

diagram of the system is shown in Fig. (b). The force equation of the

system is

0 -820 g w0y D EHO_Kyy L s
B .\ K 1 Y(s) 1
t)+—ylt)+—ylt)=— f(t =
YO+ YO yO=1 10wy o=
> 0 — 5

§ "K” Ky(1) «
== .
% ]:IB Mo o0 v

(a) {b)
18
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EXAMPLE:

Block diagram for mass-damper-spring system

F(s) , 1] Xs)

J i .
M Y s

19
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\*'al - m 'I}:l-f_i‘/
EXAMPLE 3-3 N 4

@Juu‘ﬂ*‘;
obtain mathematical models of this system by assuming that the cart is
standing still for t<0 and the spring-mass-dashpot system on the cart is also
standing still for t<O.

— U —=
>
7
%
2
Massless cart Z Wi"'v
Z I m
? 1
) b
Z

/s,

20
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Mathematical Modeling of mechanical end electrical systems

EXAMPLE 3-3
F.B.D

(In the negative\

direction
(opposite to

\themotkk(},_u,)h
b(y-i) €=

m

—h..-"'

21



6 == B O =g P

- = =& B o A
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EXAMPLE 3-3 Y
Solution

Apply Newton’s 2" law of motion ma = > F

d’ Iy
You will obtain the following relation:- m Y = —b(i — d—”) — k(y — u)
dr? dr  dt
d’y dy du . ..
Rearrange the terms:- m— + b— + ky = b— + ku . This equation is the

dt* dt dt

mathematical of the system.

to find a transfer function, assume u is the input and y is the output. Take
Laplace for the mathematical model. Assume zero 1.Cs:-

(ms? + bs + k)Y (s) = (bs + k)U(s)

Y(s)  bs+k
U(s) ms*>+ bs +k

Rearrange this equation Transfer function = G(s) =

Loy s’

22
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EXAMPLE 3-4 Obtain the transfer functions X(s)/U(s) and X3(s)/U(s) of the mechanical system shown in

Figure 3-4.

Figure 34
Mechanical system.

— X

My

ks
Ay

= i
b

AN

7

/7777777777%7779777777777779777%77777777777

A
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EXAMPLE 3-4 Y
Solution
The equations of motion for the system shown in Figure 3—4 are
mi¥; = —kix; — ko(xy — x5) — b(&; — %5) + u
myXy = —kyxy — ky(x, — x1) — b3y — 1)
Simplifying, we obtain
m¥; + bxy + (ky + ky)x, = bx, + kyx, + u

mg.i:’g -+ b.lz =+ U{E + k:q).rz = b.l.-l =+ kﬂl‘l

Taking the Laplace transforms of these two equations, assuming zero initial conditions, we obtain
[mys* + bs + (ky + ko) | Xi(s) = (bs + ky)Xy(s) + U(s) (3-5)

[mys* + bs + (ky + k)| Xo(s) = (bs + k) Xi(s) (3-6)

24
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EXAMPLE 3-4 - hmd&y

Solution
Solving Equation (3-6) for X,(s) and substituting it into Equation (3-5) and simplifying, we get
[(m1s2 + bs + ky + ky)(mas® + bs + ky + k3) — (bs + ky) ] X1 (s)
= (mys® + bs + ky + k3)U(s)

from which we obtain

Xi(s) mys® + bs + ky + ks (3-7)

U(s)  (mys* + bs + ky + ky)(mys? + bs + ky + k3) — (bs + k)’ )
From Equations (3-6) and (3-7) we have

XQ(S} _ bs + kz {’%_8)

U(s)  (mys® + bs + ky + ky)(mys® + bs + ky + k3) — (bs + ky)’

Equations (3-7) and (3-8) are the transfer functions X;(s)/U(s) and X5(s)/U(s), respectively.

25
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EXAMPLE 3-5

P
An inverted pendulum mounted Fﬁ';:ﬁ;‘;d
on a motor-driven cart is shown ) pendulum system:
in Figure 3—5(a).This is a model of 1 '
the attitude control of a space B T
booster on takeoff. (The objective | _ /
of the attitude control problem is ) ! g /|
to keep the space booster in a f
vertical position.) The inverted r‘f
pendulum is unstable in that it 1
may fall over any time in any {ons 6 -
direction unless a suitable control
force is applied. Here we J .
consider 9 Sy s
U — M
Z Q) @)
oz 7z 7

(a)
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EXAMPLE 3-5 m

4

YA
Figure 3-5
(b) free-body
diagram. =
{; - X
; [ —— Ix’T M
7
7 OO
T SIS S S S

(b)
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EXAMPLE 3-5 Y

Lo s

only a two-dimensional problem in which the pendulum moves only in
the plane of the page. The control force u is applied to the cart.
Assume that the center of gravity of the pendulum rod is at its
geometric center. Obtain a mathematical model for the system.

Define the angle of the rod from the vertical line as 0. Define also the
(x, y) coordinates of the center of gravity of the pendulum rod as
(X, Yg)- Then:

@Ho@h&§©ﬁ>§%

Ag — X + !’S]I]H

Vo = [coséd

- =M =& B o A
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EXAMPLE 3-5 Ve

Mathematical Modeling of mechanical end electrical systems ﬁ
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To derive the equations of motion for the system, consider the free-body
diagram shown in Figure 3-5(b). The rotational motion of the pendulum rod
about its center of gravity can be described by

10 = VIsin® — Hl cos@ (3-9)

where | is the moment of inertia of the rod about its center of gravity.
The horizontal motion of center of gravity of pendulum rod is given by

2

md—(xf + Isinf) = H (3-10)

The vertical motion of center of gravity of pendulum rod is

d?
H’IP(ZCOSQ) =V — mg (3-11)
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EXAMPLE 3-5

The horizontal motion of cart is described by

2
M (3-12)
dt*
Since we must keep the inverted pendulum vertical, we can assume that #(f) and (1)
are small quantities such that sin(8)= 8, cos(8) = 1 and 86> = 0.
Then. Equations (3—9) through (3—11) can be linearized. The linearized equations
are

16 = VIo — HI (3-13)
m(x +16) = H (3-14)
0=V — mg (3-15)
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EXAMPLE 3-5 m

= k
‘h‘&ﬂuu;;‘ky

4

From Equations (3—12) and (3—14), we obtain
(M + m)x + mlf = u (3-16)

From Equations (3—13), (3—14), and (3—15), we have

10 = mglo — HI
= mglh — [(mX + mlf)

(I + mi*)6 + mlx = mglé (3-17)
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EXAMPLE 3-6

Consider the inverted-pendulum system shown in Figure 3-6. Since 1n this system the mass is con-
centrated at the top of the rod. the center of gravity 1s the center of the pendulum ball. For this
case, the moment of iertia of the pendulum about its center of gravity 1s small, and we assume
I = 01n Equation (3-17). Then the mathematical model for this system becomes as follows:

g _ Figure 3-6
(M + m)X + mlf = u (3-18) ) [nverted-pendulum
mi*§ + mlx¥ = mgle  (3-19) A system.

= { sin 6“-‘—

Equations (3-18) and (3-19) can be modified to

MI6 = (M + m)gd —u (3-20)

Mx =u— mgb (3-21) £ cos

NNRNANNNNNNN
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EXAMPLE 3-6

Solution

Equation (3-20) was obtained by eliminating ¥ from Equations (3-18) and (3-19). Equation
(3-21) was obtained by eliminating # from Equations (3-18) and (3-19). From Equation (3-20)
we obtain the plant transfer function to be

A(s) B 1
~U(s) Mis>— (M + m)g
I

M + m M + m
MI - —
(5 M g)(s M g)

33
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Mathematical modeling of electrical systems

LRC Circuit.
L—+R1+—f:dr—e (3-24)
— [idt = 3-25
L R
O——00 AMN » O
€; [ — €o
i
O . O

34
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Mathematical modeling of electrical systems

LRC Circuit.

LsI(s) + RI(s) + %%I(s) = E,(s)

%% I(s) = E,(s)

E() 1
E(s) LCs*+ RCs + 1

35
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.

R R>
O—MWW————\WA—— o
L 3{:1 p— vcz J— L
i i2
O - - O
v [, . .
— [ (iy = iy)dt + Rjiy = ¢, (3-27)
C
i/(f—f)dr+m+i/5dr=0 (3-28)
C-l 2 1 202 CE 2 =

1 /.
a /12 dt = e, (3-29)

36
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.

QHOH”BQWE»
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r:?l1 [L(s) = ()] + RiLi(s) = Ei(s) (3-30)
(:11 [B(s) = his)] + Roby(s) + c; L(s) =0 (3-31)
s bls) = Es) (1-32)
E,(s) _ 1
E(s) (R,Cis + 1)(R,Cys + 1) + R,Cys
: (3-33)

" R,CR,Gs* + (R,C; + R,C, + R,Cy)s + 1

37
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.

L R
o] ALLE AWV O
l o— 4 o
[]
<]
O O

N
o

1 Eﬂ(s) _ ZE(S)

Zl = Ls + R., Zg = — =
Cs E@(S) ZI(S) + ZQ_{S:]

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros

38
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.

EXAMPLE 3-7
Ry R>
O AW MWy I O O ZT 1 Z * O
A .,
y, 1 / ’ Efs) Z, z, | Eos)
i )
C - O
O - + Q

Where:- Zl = erzﬂ = 1/(C13)Z3 — Rz, and Zd — U(Cﬂ)

39
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.

EXAMPLE 3-7 I

Oo—— 7 +I2

O— 7 —r— 74 ¥ O 7

I 3
Efs) Z 7, | Eo9) » E(s) 7 | °
“ Es)

O - * Q l
O O

2L =(Zs+ Z)L, L+ L =1

40
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.
EXAMPLE 3-7

ZL=(Zs+ Z),, L+L=1

Z3 + Z4 ZE
Il — 1, IEZ !
L+ 723+ 2y L+ 2+ 72y
Z(Zs + Zy) ] 7,7,
(5) = - E,(s) = ZsI, =
Els) =l + 4 {ZI—I_ZE-l—Z;-l—Z{l &) =2h =7 7,
11
EG(S) _ ZQZ4 B CIS CES
E(s) Z(Zy+ Zy+ Z) + Z(Zs + Z,)
(& + 2+ 24) + 242 + 2,) RI(L+RE+L)+L(RE+L)
C]S CQS Cl.f CQ.S'

R,C;R,Cys* + (RyCy + R,C, + RGy)s + 1

41
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Mathematical modeling of electrical systems

Transfer Functions of Cascaded Elements.
EXAMPLE 3-7

ZL=(Zs+ Z),, L+L=1

Z3 + Z4 ZE
Il — 1, IEZ !
L+ 723+ 2y L+ 2+ 72y
Z(Zs + Zy) ] 7,7,
(5) = - E,(s) = ZsI, =
Els) =l + 4 {ZI—I_ZE-l—Z;-l—Z{l &) =2h =7 7,
11
EG(S) _ ZQZ4 B CIS CES
E(s) Z(Zy+ Zy+ Z) + Z(Zs + Z,)
(& + 2+ 24) + 242 + 2,) RI(L+RE+L)+L(RE+L)
C]S CQS Cl.f CQ.S'

R,C;R,Cys* + (RyCy + R,C, + RGy)s + 1

42
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Mathematical modeling of electrical systems

DC motor
Battery
1]
Speed,\/*\/ T
setting > > DC
’ amplifier
(a)
Controller ~ Actuator | Process
Desired :
+ Error :
speed »|  Amplifier o Rotating
motor disk
(voltage) -
Measured speed .
_ Sensor

(voltage)

Tachometer [«

>

Actual
speed
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A Mathematical modeling of electrical systems
u
t DC motor
0 Armature
m Stator
winding
a
t Rotor windings
) Brush
|
C R; 2
+

Brush
Commutator

@, ¢ Inertia = J

Friction = b

Bearings

(a) (b)

- = =& B o A
23]
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o
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Mathematical modeling of electrical systems

DC motor: field current control

Tn(s) = (KiKel)li(s) = Kilf(s),
T.(s) = Ti(s) + Ti(s), T.(s) = Js0(s) + bsO(s).

T3(5) = Tls) — T), Tpu(s) = Kyl (), (o)

a6 el e Kon/(JLy) i
Vi(s) s(Js + b)(Lyss+ Ry s(s +'b/T)(s + Ry/Ly)
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Mathematical modeling of electrical systems

DC motor: field current control

Disturbance
Td (s)

Field Load | Speed
y ORI EECH NEON IR KGN :
¢(s) > R +Ls > K, o e - . 05

U | =

Position

Output
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DC motor: armature current control

Ta(s) = (KiK:I)I(s) = KL (s). I,(s) =

Vi(s) = (R, + L,s)L(s) + Vi(s), Vi(s) = Kyw(s),

T:.(s) = Js%0(s) + bsO(s) = T,(s) — T (s).

s K
Vals) s, + L5 )(Fs hb) ok KK, ]

G(s) =

K
s(s? + 2{w,s + w3)
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Mathematical modeling of electrical systems

DC motor: armature current control

Disturbance
Td (s)
Armature Speed
S o QU D
i i R +il.8 + ds+b s
K, |«
Back electromotive force

Position
0(s)



