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Dynamic system modeling  
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Definition of the system and 
its components  

Formulation of mathematical 
model and assumptions   

Represent the mathematical 
model by DE 

Solve the mathematical 
model  

Verify the solution and the 
assumptions  

Obtain the 
solution  Otherwise  
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Through and across – variables  
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A through – variable is the variable that does not change between the 
ends of system element. For example, a current passing through a 
resistance  

Across – variable is the variable that changes between the ends of 
system element. For example,  the voltage at the ends of a resistance  

System  Through variable  Across variable  

Electrical  Current, i Voltage diff., v 

Translational motion   Force, F Velocity diff., V 

Rotational motion  Torque, T  Angular velocity, ω 

Fluids  Flow rate, Q Pressure, P 

Thermal  Heat flow, q Temp. diff., T 
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DE for ideal elements  
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System  Governing DE System  Governing DE 

Elec. Inductance  v = L (di/dt) Fluid caps. Q = Cf (dP/dt) 

Trans. Spring  V = (1/k)(dF/dt) Thermal caps. q = Ct (dTemp/dt) 

Rot. Spring  ω = (1/k)(dT/dt) Elec. Resistance  i = (1/R) v 

Fluid inertia  P = I (dQ/dt) Trans. Damper  F = C v 

Elec. Capacitance  i = C (dv/dt) Rot. Damper  T = C ω 

Mass  F = M (dv/dt) Fluid resistance  Q = (1/Rf) P 

Mass moment of 
inertia  

T = J (dω/dt) Thermal 
resistance  

Q = (1/Rt)T 
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Analogous systems  
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Analogous systems are systems that have the same governing differential 
equation  

Example  

Mass – spring damper system  
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RLC circuit  
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Laws for modeling  
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In control systems, the main systems are combination between mechanical and 
electrical systems. For mechanical systems, Newton’s laws are used and in the 
electrical systems Kirchhoff's laws are used   

Newton 2nd law of motion  

maF 

Kirchhoff's laws 

Junction Rule                        where I is the current    oi II

Where:  
F is the force  
m is the mass  
a in the acceleration  

Close Loop Rule                             where V is the voltage  0  loopclosedV
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Newton 2nd law of motion  
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Statement  

..
xMMaF 

Law  

M 
F 

..
xM

x When a net external force acts on an 
object of mass m, the acceleration that 
results is directly proportional to the 
net force and has a magnitude that is 
inversely proportional to the mass. The 
direction of the acceleration is the 
same as the direction of the net force. 
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Kirchhoff's laws 
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Junction Rule Statement  

Law  

•“At any node (junction) in an electrical circuit, the sum of currents flowing into that node is 
equal to the sum of currents flowing out of that node, or: The algebraic sum of currents in a 
network of conductors meeting at a point is zero”.  
•The sum of currents entering the junction are thus equal to the sum of currents leaving. This 
implies that the current is conserved (no loss of current).  

Close Loop Rule Statement  

Law  

  oi II

0  loopclosedV

The principles of conservation of energy imply that the directed sum of the 
electrical potential differences (voltage) around any closed circuit is zero.  
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Linear approximation of systems     
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The physical system can be linear for a range and none linear if we extend this 
range. For example, the helical spring has a liner relation between the force 
applied on it and the deflection if the deflection was small.  

Linear system has an excitation (x(t)) and response (y(t)) 

 
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Response  Excitation  

For example  
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Complex variable  

A complex variable is a combination of real and imaginary variables (a and b 
respectively ) 

bjas 

Complex 

variable  
Real  

Imaginary  

Real  

Imaginary  s-plane  

s = a+bj 

R 

Ө 
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cos
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Complex variable  

A complex variable (s) is a combination of real variable (a) and imaginary 
variable (b) and is represented as s = a+bj  

or it can be represented using Taylor series as: ejӨ = R cos(Ө) + R sin(Ө) j  

Complex variable operations   

A complex variable can be represented as : s = R cos(Ө) + R sin(Ө) j 

Assume s1 = a1+b1j and s2=a2+b2j, then   

s1±s2 =(a1+a2) ±(b1+b2)j  

s1s2 =(a1a2-b1b2) –(a1b2-b1a2)j  

s1±s2 =(R1±R2) e(Ө1± Ө 2)j  

s1s2 =(R1R2) e(Ө1+ Ө 2)j  

s1/s2 =(R1/R2) e(Ө1- Ө 2)j  
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Complex functions  

A complex function G(s) is a function of complex variables of (s) kind  

Example  

 
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The values of (s) that make G(s) = 0 are called zeros   

The values of (s) that make G(s) = ±∞ are called poles  

Example   
  

    1076

41
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
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This function has zeros: 1, -4 and ±∞ and poles: 0 (double), -6, -7 (triple) and 10 
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Laplace transformation  

F(s) is the Laplace transformation for the function f(t)  

Definition  

      tfdtetfsF st  




0

.

Laplace transformation is used usually to transfer the DE from time (t) domain 
to s-domain to reduce its complexity and then solved the transfer function and 
represent the solution again in the time domain     

Laplace transformation is used in control systems to find a relation between 
the output and the input. The procedure is simple, transform the DE to s-
domain and represent the response and the excitation as functions in terms 
of s (e.g. Y(s) and R(s) respectively), then the transfer  function (G(s)) will be 
Y(s)/R(s).     
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Laplace transformation  

Table  
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Laplace transformation  

Table  
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Mathematical modeling of springs    
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Mathematical modeling of Damper    
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EXAMPLE: Consider the mass-spring-friction system shown in Fig. The 
linear motion concerned is in the horizontal direction. The free-body 
diagram of the system is shown in Fig. (b). The force equation of the 
system is 
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EXAMPLE:  
 

Block diagram for mass-damper-spring system  
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EXAMPLE 3–3 

obtain mathematical models of this system by assuming that the cart is 
standing still for t<0 and the spring-mass-dashpot system on the cart is also 
standing still for t<0. 
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EXAMPLE 3–3 

F.B.D 

In the negative 
direction  

(opposite to 
the motion)  
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EXAMPLE 3–3 

Solution  
 
Apply Newton’s  2nd law of motion 
 
 
You will obtain the following relation:- 
 

Rearrange the terms:-                                                               . This equation is the 

mathematical of the system.  

to find a transfer function, assume u is the input and y is the output. Take 
Laplace for the mathematical model. Assume zero I.Cs:-  
 
 
 

Rearrange this equation:   
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EXAMPLE 3-4 

Solution  
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EXAMPLE 3-4 

Solution  
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EXAMPLE 3-5 

An inverted pendulum mounted 
on a motor-driven cart is shown 
in Figure 3–5(a).This is a model of 
the attitude control of a space 
booster on takeoff. (The objective 
of the attitude control problem is 
to keep the space booster in a 
vertical position.) The inverted 
pendulum is unstable in that it 
may fall over any time in any 
direction unless a suitable control 
force is applied. Here we 
consider 
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EXAMPLE 3-5 
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EXAMPLE 3-5 

only a two-dimensional problem in which the pendulum moves only in 
the plane of the page. The control force u is applied to the cart. 
Assume that the center of gravity of the pendulum rod is at its 
geometric center. Obtain a mathematical model for the system. 
 
Define the angle of the rod from the vertical line as θ. Define also the 
(x, y) coordinates of the center of gravity of the pendulum rod as 
(xG,yG). Then:  
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EXAMPLE 3-5 

To derive the equations of motion for the system, consider the free-body 
diagram shown in Figure 3–5(b). The rotational motion of the pendulum rod 
about its center of gravity can be described by 

where I is the moment of inertia of the rod about its center of gravity. 
The horizontal motion of center of gravity of pendulum rod is given by 

The vertical motion of center of gravity of pendulum rod is 
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EXAMPLE 3-5 

The horizontal motion of cart is described by 

Since we must keep the inverted pendulum vertical, we can assume that  
are small quantities such that sin(θ)= θ, cos(θ) = 1 and  
Then. Equations (3–9) through (3–11) can be linearized. The linearized equations 
are 
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EXAMPLE 3-5 

From Equations (3–12) and (3–14), we obtain 

From Equations (3–13), (3–14), and (3–15), we have 



Mathematical Modeling of mechanical end electrical systems  

EXAMPLE 3-6 
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EXAMPLE 3-6 

Solution 
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Mathematical modeling of electrical systems   
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Mathematical modeling of electrical systems   

35 



Mathematical Modeling of mechanical end electrical systems  

Mathematical modeling of electrical systems   
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Mathematical modeling of electrical systems   
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Mathematical modeling of electrical systems   

Remember that the impedance approach is valid only if the initial conditions 
involved are all zeros 
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Mathematical modeling of electrical systems   

EXAMPLE 3–7 

Where:- 
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Mathematical modeling of electrical systems   

EXAMPLE 3–7 
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Mathematical modeling of electrical systems   

EXAMPLE 3–7 
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Mathematical modeling of electrical systems   

EXAMPLE 3–7 

42 



Mathematical Modeling of mechanical end electrical systems  

Mathematical modeling of electrical systems   

DC motor 
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Mathematical modeling of electrical systems   

DC motor 
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Mathematical modeling of electrical systems   

DC motor: field current control  
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Mathematical modeling of electrical systems   

DC motor: field current control  
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Mathematical modeling of electrical systems   

DC motor: armature current control  
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Mathematical modeling of electrical systems   

DC motor: armature current control  


